
JOURNAL OF APPLIED POLYMER SCIENCE VOL. 18, PP. 2399-2406 (1974) 

Vapor Pressure Osmometry: A Model 
Accounting for the Solute Dependence of the 

Calibration Constant 

BRUCE H. BERSTED, Research and Development Department, 
Amoco Chemicals Corporation, Amoco Research Center, 

Naperville, Illinois 605.40 

synopsis 

A model describing the operation of the vapor pressure osmometer has been developed 
to account for the solute dependence of the calibration constant. This model envisions 
the existence of a diffusion-controlled surface concentration that differs from the con- 
centration of the drop as a whole. Three limiting cases approximated for the surface 
concentration depend on the relative magnitudes of thermistor self-heating and solution 
concentration. Quantitative predictions of the dependence of d(AR)/d(V2)  (the 
variation of thermistor resistance difference with thermistor self-heating) on both 
solute molecular weight and solution concentration are in good agreement with experi- 
mental data. 

INTRODUCTION 

Vapor pressure osmometry, VPO, is frequently used to  determine the 
number-average molecular weight of nonvolatile materials, particularly of 
polymeric materials whose molecular weight is under 10,OOO. In practice, 
the temperature difference between two thermistors, one supporting a solu- 
tion drop and the other a drop of pure solvent, is measured as a resistance 
difference AR. This difference in turn is usually assumed to be related to 
the weight concentration Co of the solution, such that 

a 
A R  = - Co + bCo2 + . . Mn 

where wn is the number-average molecular weight of the sample and a is a 
constant that is assumed to be independent of solute and is often referred to 
as the calibration constant. However, in a previous paper,' I demon- 
strated that the common practice of applying calibration constants ob- 
tained with low molecular weight standards to materials of considerably 
higher molecular weight is generally unjustified. I concluded that the 
calibration constant varies with the molecular weight of the solute and that 
the assumption of the constancy of the calibration constant is particularly 
poor when low molecular weight standards are compared with high molec- 
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ular weight polymers. This behavior was ascribed to the tendency for a 
diffusion-controlled surface concentration to form on the solution drop. I 
also showed that operating the vapor osmometer so as to  eliminate the 
solute dependence of the calibration constant yields molecular weights in 
good agreement with those determined by membrane osmometry. 

Both Van Dam2 and Tomlinson et al.3 have developed excellent models to 
account for the effects of instrument design variables on the observed 
instrument response. But up to now there has been no theoretical model 
to  account for the solute dependence of the calibration constant. I have 
therefore attempted to  provide such a model and to quantitatively compare 
it with some experimental results obtained with dotriacontane, tristearin, 
and standard polystyrene materials of known molecular weights. It 
clearly accounts for the solute dependence of the calibration constant by 
taking into consideration the effects of thermistor self-heating and the 
limitation of solute diffusion within the drop. 

EXPERIMENTAL 

The detailed procedures and conditions for operating the Hewlett- 
Packard vapor pressure osmometer have been described. 

Accurate molecular weights for dotriacontane and tristearin were ob- 
tained by mass spectrometry. The polystyrene materials were obtained 
from ArRo Laboratories. 

Diffusion coefficients were obtained in o-dichlorobenzene at  25°C using a 
Beckman Model E ultracentrifuge. Such measurements were considered 
adequate because the temperature dependence of the diffusion const,ant is, 
to a good approximation, independent of s01ute.~ Moreover, the ratio of 
diffusion constants for dotriacontane and tristearin was desired. The 
diffusion constants were obtained from plots of the square of the second 
moment5 versus time. 

THEORETICAL MODEL 

Because many of the expressions used in the development were somewhat 
unwieldy and had been derived they were left in their most 
general terms. Further, it was assumed that the observed resistance dif- 
ferences of the thermistors, A R ,  were always directly proportional to  their 
temperature difference and that steady-state conditions (i.e., d ( A R ) / d t  = 
0) were in effect. By contrast with the assumptions made in previous 
 model^,^^^ however, the drop was not assumed to be uniform in concentra- 
tion or temperature, and the effect of thermistor self-heating was not 
considered negligible. 

The heat flows from the various heat sinks and sources in the model are 
shown schematically in Figure 1. Specifically, the symbols are: TO, 
temperature of solvent vapor; T, temperature of thermistor; T8, tem- 
perature of drop surface; k,  overall thermal conductivity of glass bead and 
liquid drop; h, convective heat transfer coefficient; U ,  overall coefficient 
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Fig. 1. Schematic dmgram depicting the various heat factors involved in the model. 

for heat transfer between the source of heat in the thermistor and the vapor 
via the thermistor connecting wires and the more massive support structure; 
A ,  outside area of drop; A,, cross sectional area of connecting wires; V ,  
Wheatstone bridge voltage applied to thermistors; ro, resistance of thermis- 
tors; L, molar heat of vaporization of solvent; MI, molecular weight of 
solvent; dvldt, mass transfer of solvent to drop (g solvent/sec). The 
primes refer to the reference (solvent) drop. 

Thus, the various expressions are: kA(T, - T ) ,  heat flow from drop 
surface to thermistor; hA(T, - To), heat loss by convection; UA,(T - 
To), heat loss through thermistor connecting wire; V2/ro, heat generated by 
thermistor self-heating; L / M I .  dv/dt, heat transfer due to mass transfer of 
the solvent to the surface of the drop from the cell atmosphere. 

From a heat balance at the drop surface, 
L / M l . d v / d t  = hA(Ts - To) + kA(T8 - T) .  

kA(Ts - T )  = UA,(T - To) - V2/ro. 

(1) 

(2) 

For the case of mass transfer by diffusion from an atmosphere containing 
solvent vapor at temperature To, surface drop temperature T,, and a drop 
of nonideal solution of weight concentration Co, dv/dt can be represented2 
as 

(3) 

From a heat balance at the thermistor, 

dv/dt = (cuOCO/AT, + Poco2 + . . .) - ~ o ( T s  - TO) 
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where ao, Do, and yo are complex functions of the drop size a.nd shape, the 
thermal conductivity of the vapor-air mixture, the diffusion coefficient of 
the solvent through air, the vapor pressure of the solvent at To, and the 
latent heat of vaporization of the solvent. In addition, Do is a function of 
the second viral coefficient of the solution. Because t,he drop is not nec- 
essarily of uniform concentration, Co in eq. (3) is replaced by an effective 
surface concentration, C. 

Combining eqs. (l), (2), and (3) so as to eliminate T,  gives 

T - To = (cYC/M, + pC2 + . . .) + ~(V’/ro) (4) 
where 

a& 

( k M1kA Lro >I Lro [ Mi Mi h A + - + U A ,  1 + - + -  

P& 

( k MlkA + U A ,  1 + - + - 

I p$ hA + U A ,  1 + - + - ( k MlkA 
If both thermistors and drops are identical except for the presence of 

solute in one drop, the temperature difference for the two drops can be 
respresented as 

For the case where a diffusion-controlled surface concentration is formed, 
C can be approximated by considering the kinetics of solvent mass transfer 
and solute diffusion. For a steady-state condition where d(AR)/d t  = 0, 
the rate of diffusion must be such that the rate of mass transfer of solvent 
to the drop surface gives rise to the condition that dC/dt cv 0. Conse- 
quently, 

dv _ -  - c.- dw 
dt dt 

where w and v are the weights of the solute and solvent (approximating the 
solution weight for dilute solutions) , respectively. Equation (6) gives the 
relation between the rate of solvent mass transfer at the drop surface and 
the rate of solute transfer needed to keep the concentration constant. 

Rather than the development of an exact analytical solution, the ap- 
proximate, but completely general, method of the “equiaccessible surface’16 
was employed to solve the problem. In this method, the rate of mass 
transfer of solute to the surface is equal to Do(Co - C)/6 under steady-state 
conditions, where Do is the diffusion coefficient of the solute, Co is the con- 
centration of the drop as a whole, and 6 is the effective film thickness: which 
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is a fictitious layer that is independent of solute and dependent only on the 
geometric shape of the surface. Therefore, equating the rates gives 

or 
co C =  

1 + 6); 
If the approximation is made that the surface concentration does not differ 
substantially from that of the solution as a whole (i.e., (C - Co/C << l), 
then (dv/dt)(6/Do) << 1. Expanding Co/[l + (dv/dt)6/Do] in terms of 
(dv/dt)(6/Do),  neglecting terms in dv/dt  higher than the first power in 
(dv/dt)(6/Do) (since (dv/dt)(6/Do) << l), substituting from eqs. (1) and ( 2 )  
for dvldt ,  and rearranging gives 

To further elaborate on the theory, the following three limiting cases were 
analyzed: I, no condensation on or evaporation from the solution drop; 11, 
evaporation predominates a t  the solution drop surface; 111, condensation 
predominates a t  the solution drop surface. 

Case I. For the case where no mass transfer of solvent takes place on 
the surface of the solution drop, Vz/ro - UA,(T - To) - hA(T, - TO) is 
equal to zero and C = Co from eq. (9). Therefore, as pointed out else- 
where,' calibration of the VPO is entirely valid. An approximation to  
this state can be made by operating the VPO so that the size of the solution 
drop has no effect, and by using low concentrations so that heat losses at 
the solution drop surface [i.e., hA (T ,  - To) ] are small enough that [6hAM, 
(T, - To)]/LDO << 1. It has been shown that V2/ro -. UA,(T - To) = 0 
for the case of zero drop size effects.' Consequently, from eq. (9), C 'v Co. 
I have already shown that M, determinations from vapor pressure and 
membrane osmometry are in significantly better agreement when the in- 
strument is operated in the manner suggested for this case than when it is 
operated RS recommended by the manufacturer.' 

If heat losses from the thermistor supporting wire are kept 
small compared to  Vz/ro by the reduction of the supporting wire diameter 
and the solution concentration is small enough so that the tendency for 
evaporation (due to thermistor self-heating) is large compared with the 
tendency for condensation, then evaporation of solvent represents the 
major mode of heat loss and V2/ro  >> UA,(T - To) + hA(T, - TO). For 
this case, eq. (9) reduces to 

Case 11. 

c = C0[l + """1. L . Do. ro 
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Substituting eq. (10) into eq. (5 )  and neglecting terms in [ ( 6 - V 2 . M I ) / D o -  
rO.L)l2 gives 

Terms in [ ( A l l  * 6 .  V 2 ) / ( L .  DO. ro) 1' are neglect,ed since the assumption that 
C - CO/C<< limpliesthat [(M1.6.V2)/(L.Do.ro)]<< 1, fromeq. (10). 

Case 111. Condensation will predominate a t  the solution drop surface 
when the effect of heat transfer to the drop surface from condensation is 
much greater than that due to thermistor self-heating. This case occurs 
at high concentrations and low bridge voltages such that hA ( T ,  - To) >> 
(V2/ro) - UA,(T - To) and T,  = T. The approximation of T,  by T for 
this case can be justified from the following argument. Since for a drop 
of uniform temperature the heat losses through the thermistor supporting 
wires have been calculated3 to be significantly less than the heat losses at 
the drop surface due to  conduction through the vapor, and since at suffi- 
ciently high solution concentrations, the heat generated by condensation 
at the drop surface is large compared to the thermistor self-heating, then 
this case closely approximates that where the major heat sinks and sources 
are a t  the drop surface, and consequently T,  = T.  Equation (9) thus be- 
comes 

Combining this expression with eq. (5 )  and neglecting terms in [M,hA6/ 
(L  .Do) 1' gives 

The neglect of higher-order terms in the above expansion arises out of the 
assumption that (C - Co) is small compared to Co. 

COMPARISON OF THEORY WITH EXPERIMENTAL DATA 

I have previously shown that the measured value of A R  varies linearly 
with the square of the bridge voltage, V2, that the slope of the line formed 
for a plot of A R  versus V 2  varies linearly with molar concentration, and that 
the logarithm of this slope varies linearly with the logarithm of the molec- 
ular weight. * According to the present model, these experimental studies 
are assumed to belong under case 11, where V2/r0 >> UA,(T - TO) + 
hA(T, - To), since the bridge voltage used was significantly higher and the 
solution concentration significantly lowcr than that needed for the condi- 
tion of zero drop size effects (- case I). Now, however, the theoretical 
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Fig. 2. Effect of molar concentration on the slope of the variation of AR with the square 
of the bridge voltage, d(AR) /d (Vz ) .  

equations relating to  case I1 must be modified to account for such experi- 
mental observations. 

The variation of d(AR) /d (V2)  with molar concentration is shown for 
dotriacontane and tristearin in Figure 2. The origin of this variation is of 
great importance because the solute dependence of the calibration constant 
is directly related to  the solute dependence of the variation of AR with V 2  
(i.e., to  the variation of d(AR) /d (V2)  with respect to molar concentration 
and solute). 

In  order to  compare theoretical predictions with the experimental data, 
a proportionality between T - T' and AR (the observed resistance dif- 
ference between the two thermistors) is assumed. At low molecular 
weights where the second term of eq. (11) becomes negligible, taking the 
derivative of eq. (11) with respect to V z  permits the ratio of the variation 
of dAT/dV2 with molar concentration for two materials to be given by 

d dAT 
dC, ( z)l D, 

As measured in our laboratory, the diffusion constants for dotriacontane 
and tristearin a t  25°C in o-dichlorobenzene are (3.1 f 0.2)X106 cm2/sec 
and (2.0 f 0.3) X lo6 cm2/sec, respectively. The calculated ratio of 1.55 f 
0.19 is in reasonable agreemcnt with the value of 1.46 as determined from 
Figure 2 and eq. (14). However, because the poor precision in the mea- 
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surement of the diffusion constants makes the apparent agreement incon- 
clusive, further agreement between theory and experiment is necessary to  
demonstrate the applicability of the theory. 

In  order to compare the theoretical and experimental variation of d(AT)/ 
d(V2) with molecular weight, the logarithm of d(AT)/d(V2) must be calcu- 
lated. From eq. (11), 

Substituting the relation4 
[f + G y ]  

1 M  _ -  - 
Do K T  

where a is the exponent in the empirical viscosity relation, M is the molec- 
ular weight, and K is the Boltzman constant, for l/Do gives 

The molecular weight dependence of the first term will dominate for suffi- 
ciently high molecular weights, and the second and third terms may be con- 
sidered approximately independent of molecular weight. Therefore, using 
the experimentally determined value of a of 0.74 for polystyrene permits 
eq. (16) to  be represented as follows: 

log dm 'v 0.58 log M + constant. 
dV2 

Comparing t,he predicted slope of 0.58 with the slope of 0.57 which was 
calculated from experimental results obtained with polystyrene standards 
(from a plot of 6(AR)/6Vz in Figure 7 of my earlier paper') shows satis- 
factory agreement. Thus the model appears to  adequately account for 
the solute dependence of the calibration constant. By contrast, the cali- 
bration constant can be considered solute independent only if no evapora- 
tion or condensation takes place at the solution drop surface. 
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